Search results

Search for "on-chip plasmonic structures" in Full Text gives 1 result(s) in Beilstein Journal of Nanotechnology.

Plasmonic nanosensor based on multiple independently tunable Fano resonances

  • Lin Cheng,
  • Zelong Wang,
  • Xiaodong He and
  • Pengfei Cao

Beilstein J. Nanotechnol. 2019, 10, 2527–2537, doi:10.3762/bjnano.10.243

Graphical Abstract
  • different components, such as T-shaped, ring, and split-ring cavities, has been proposed which dramatically reduces the nanosensor dimensions without sacrificing performance. These design concepts pave the way for the construction of compact on-chip plasmonic structures, which can be widely applied to
  • nanosensors, optical splitters, filters, optical switches, nonlinear photonic and slow-light devices. Keywords: Fano resonance; metal–dielectric–metal (MDM) waveguide; nanosensor; on-chip plasmonic structures; surface plasmon polaritons (SPPs); Introduction Surface plasmon polariton (SPP) is a unique
  • . Independently adjusting the position of the resonance peaks can make the structure high suitability for different applications, and the compact size is always desirable in the design of on-chip plasmonic structures. However, multiple resonance peaks generally imply more complex structures resulting in
PDF
Album
Supp Info
Full Research Paper
Published 17 Dec 2019
Other Beilstein-Institut Open Science Activities